(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
fac(0) → 1
fac(s(x)) → *(s(x), fac(x))
floop(0, y) → y
floop(s(x), y) → floop(x, *(s(x), y))
*(x, 0) → 0
*(x, s(y)) → +(*(x, y), x)
+(x, 0) → x
+(x, s(y)) → s(+(x, y))
1 → s(0)
fac(0) → s(0)
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
fac(0') → 1'
fac(s(x)) → *'(s(x), fac(x))
floop(0', y) → y
floop(s(x), y) → floop(x, *'(s(x), y))
*'(x, 0') → 0'
*'(x, s(y)) → +'(*'(x, y), x)
+'(x, 0') → x
+'(x, s(y)) → s(+'(x, y))
1' → s(0')
fac(0') → s(0')
S is empty.
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
fac(0') → 1'
fac(s(x)) → *'(s(x), fac(x))
floop(0', y) → y
floop(s(x), y) → floop(x, *'(s(x), y))
*'(x, 0') → 0'
*'(x, s(y)) → +'(*'(x, y), x)
+'(x, 0') → x
+'(x, s(y)) → s(+'(x, y))
1' → s(0')
fac(0') → s(0')
Types:
fac :: 0':s → 0':s
0' :: 0':s
1' :: 0':s
s :: 0':s → 0':s
*' :: 0':s → 0':s → 0':s
floop :: 0':s → 0':s → 0':s
+' :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
fac,
*',
floop,
+'They will be analysed ascendingly in the following order:
*' < fac
*' < floop
+' < *'
(6) Obligation:
Innermost TRS:
Rules:
fac(
0') →
1'fac(
s(
x)) →
*'(
s(
x),
fac(
x))
floop(
0',
y) →
yfloop(
s(
x),
y) →
floop(
x,
*'(
s(
x),
y))
*'(
x,
0') →
0'*'(
x,
s(
y)) →
+'(
*'(
x,
y),
x)
+'(
x,
0') →
x+'(
x,
s(
y)) →
s(
+'(
x,
y))
1' →
s(
0')
fac(
0') →
s(
0')
Types:
fac :: 0':s → 0':s
0' :: 0':s
1' :: 0':s
s :: 0':s → 0':s
*' :: 0':s → 0':s → 0':s
floop :: 0':s → 0':s → 0':s
+' :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
+', fac, *', floop
They will be analysed ascendingly in the following order:
*' < fac
*' < floop
+' < *'
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
+'(
gen_0':s2_0(
a),
gen_0':s2_0(
n4_0)) →
gen_0':s2_0(
+(
n4_0,
a)), rt ∈ Ω(1 + n4
0)
Induction Base:
+'(gen_0':s2_0(a), gen_0':s2_0(0)) →RΩ(1)
gen_0':s2_0(a)
Induction Step:
+'(gen_0':s2_0(a), gen_0':s2_0(+(n4_0, 1))) →RΩ(1)
s(+'(gen_0':s2_0(a), gen_0':s2_0(n4_0))) →IH
s(gen_0':s2_0(+(a, c5_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
Innermost TRS:
Rules:
fac(
0') →
1'fac(
s(
x)) →
*'(
s(
x),
fac(
x))
floop(
0',
y) →
yfloop(
s(
x),
y) →
floop(
x,
*'(
s(
x),
y))
*'(
x,
0') →
0'*'(
x,
s(
y)) →
+'(
*'(
x,
y),
x)
+'(
x,
0') →
x+'(
x,
s(
y)) →
s(
+'(
x,
y))
1' →
s(
0')
fac(
0') →
s(
0')
Types:
fac :: 0':s → 0':s
0' :: 0':s
1' :: 0':s
s :: 0':s → 0':s
*' :: 0':s → 0':s → 0':s
floop :: 0':s → 0':s → 0':s
+' :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
+'(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
*', fac, floop
They will be analysed ascendingly in the following order:
*' < fac
*' < floop
(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
*'(
gen_0':s2_0(
a),
gen_0':s2_0(
n611_0)) →
gen_0':s2_0(
*(
n611_0,
a)), rt ∈ Ω(1 + a·n611
0 + n611
0)
Induction Base:
*'(gen_0':s2_0(a), gen_0':s2_0(0)) →RΩ(1)
0'
Induction Step:
*'(gen_0':s2_0(a), gen_0':s2_0(+(n611_0, 1))) →RΩ(1)
+'(*'(gen_0':s2_0(a), gen_0':s2_0(n611_0)), gen_0':s2_0(a)) →IH
+'(gen_0':s2_0(*(c612_0, a)), gen_0':s2_0(a)) →LΩ(1 + a)
gen_0':s2_0(+(a, *(n611_0, a)))
We have rt ∈ Ω(n2) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n2).
(11) Complex Obligation (BEST)
(12) Obligation:
Innermost TRS:
Rules:
fac(
0') →
1'fac(
s(
x)) →
*'(
s(
x),
fac(
x))
floop(
0',
y) →
yfloop(
s(
x),
y) →
floop(
x,
*'(
s(
x),
y))
*'(
x,
0') →
0'*'(
x,
s(
y)) →
+'(
*'(
x,
y),
x)
+'(
x,
0') →
x+'(
x,
s(
y)) →
s(
+'(
x,
y))
1' →
s(
0')
fac(
0') →
s(
0')
Types:
fac :: 0':s → 0':s
0' :: 0':s
1' :: 0':s
s :: 0':s → 0':s
*' :: 0':s → 0':s → 0':s
floop :: 0':s → 0':s → 0':s
+' :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
+'(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
*'(gen_0':s2_0(a), gen_0':s2_0(n611_0)) → gen_0':s2_0(*(n611_0, a)), rt ∈ Ω(1 + a·n6110 + n6110)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
fac, floop
(13) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol fac.
(14) Obligation:
Innermost TRS:
Rules:
fac(
0') →
1'fac(
s(
x)) →
*'(
s(
x),
fac(
x))
floop(
0',
y) →
yfloop(
s(
x),
y) →
floop(
x,
*'(
s(
x),
y))
*'(
x,
0') →
0'*'(
x,
s(
y)) →
+'(
*'(
x,
y),
x)
+'(
x,
0') →
x+'(
x,
s(
y)) →
s(
+'(
x,
y))
1' →
s(
0')
fac(
0') →
s(
0')
Types:
fac :: 0':s → 0':s
0' :: 0':s
1' :: 0':s
s :: 0':s → 0':s
*' :: 0':s → 0':s → 0':s
floop :: 0':s → 0':s → 0':s
+' :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
+'(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
*'(gen_0':s2_0(a), gen_0':s2_0(n611_0)) → gen_0':s2_0(*(n611_0, a)), rt ∈ Ω(1 + a·n6110 + n6110)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
floop
(15) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol floop.
(16) Obligation:
Innermost TRS:
Rules:
fac(
0') →
1'fac(
s(
x)) →
*'(
s(
x),
fac(
x))
floop(
0',
y) →
yfloop(
s(
x),
y) →
floop(
x,
*'(
s(
x),
y))
*'(
x,
0') →
0'*'(
x,
s(
y)) →
+'(
*'(
x,
y),
x)
+'(
x,
0') →
x+'(
x,
s(
y)) →
s(
+'(
x,
y))
1' →
s(
0')
fac(
0') →
s(
0')
Types:
fac :: 0':s → 0':s
0' :: 0':s
1' :: 0':s
s :: 0':s → 0':s
*' :: 0':s → 0':s → 0':s
floop :: 0':s → 0':s → 0':s
+' :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
+'(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
*'(gen_0':s2_0(a), gen_0':s2_0(n611_0)) → gen_0':s2_0(*(n611_0, a)), rt ∈ Ω(1 + a·n6110 + n6110)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
(17) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n2) was proven with the following lemma:
*'(gen_0':s2_0(a), gen_0':s2_0(n611_0)) → gen_0':s2_0(*(n611_0, a)), rt ∈ Ω(1 + a·n6110 + n6110)
(18) BOUNDS(n^2, INF)
(19) Obligation:
Innermost TRS:
Rules:
fac(
0') →
1'fac(
s(
x)) →
*'(
s(
x),
fac(
x))
floop(
0',
y) →
yfloop(
s(
x),
y) →
floop(
x,
*'(
s(
x),
y))
*'(
x,
0') →
0'*'(
x,
s(
y)) →
+'(
*'(
x,
y),
x)
+'(
x,
0') →
x+'(
x,
s(
y)) →
s(
+'(
x,
y))
1' →
s(
0')
fac(
0') →
s(
0')
Types:
fac :: 0':s → 0':s
0' :: 0':s
1' :: 0':s
s :: 0':s → 0':s
*' :: 0':s → 0':s → 0':s
floop :: 0':s → 0':s → 0':s
+' :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
+'(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
*'(gen_0':s2_0(a), gen_0':s2_0(n611_0)) → gen_0':s2_0(*(n611_0, a)), rt ∈ Ω(1 + a·n6110 + n6110)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
(20) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n2) was proven with the following lemma:
*'(gen_0':s2_0(a), gen_0':s2_0(n611_0)) → gen_0':s2_0(*(n611_0, a)), rt ∈ Ω(1 + a·n6110 + n6110)
(21) BOUNDS(n^2, INF)
(22) Obligation:
Innermost TRS:
Rules:
fac(
0') →
1'fac(
s(
x)) →
*'(
s(
x),
fac(
x))
floop(
0',
y) →
yfloop(
s(
x),
y) →
floop(
x,
*'(
s(
x),
y))
*'(
x,
0') →
0'*'(
x,
s(
y)) →
+'(
*'(
x,
y),
x)
+'(
x,
0') →
x+'(
x,
s(
y)) →
s(
+'(
x,
y))
1' →
s(
0')
fac(
0') →
s(
0')
Types:
fac :: 0':s → 0':s
0' :: 0':s
1' :: 0':s
s :: 0':s → 0':s
*' :: 0':s → 0':s → 0':s
floop :: 0':s → 0':s → 0':s
+' :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
+'(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
(23) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
+'(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
(24) BOUNDS(n^1, INF)