(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

fac(0) → 1
fac(s(x)) → *(s(x), fac(x))
floop(0, y) → y
floop(s(x), y) → floop(x, *(s(x), y))
*(x, 0) → 0
*(x, s(y)) → +(*(x, y), x)
+(x, 0) → x
+(x, s(y)) → s(+(x, y))
1s(0)
fac(0) → s(0)

Rewrite Strategy: INNERMOST

(1) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(2) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

fac(0') → 1'
fac(s(x)) → *'(s(x), fac(x))
floop(0', y) → y
floop(s(x), y) → floop(x, *'(s(x), y))
*'(x, 0') → 0'
*'(x, s(y)) → +'(*'(x, y), x)
+'(x, 0') → x
+'(x, s(y)) → s(+'(x, y))
1's(0')
fac(0') → s(0')

S is empty.
Rewrite Strategy: INNERMOST

(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(4) Obligation:

Innermost TRS:
Rules:
fac(0') → 1'
fac(s(x)) → *'(s(x), fac(x))
floop(0', y) → y
floop(s(x), y) → floop(x, *'(s(x), y))
*'(x, 0') → 0'
*'(x, s(y)) → +'(*'(x, y), x)
+'(x, 0') → x
+'(x, s(y)) → s(+'(x, y))
1's(0')
fac(0') → s(0')

Types:
fac :: 0':s → 0':s
0' :: 0':s
1' :: 0':s
s :: 0':s → 0':s
*' :: 0':s → 0':s → 0':s
floop :: 0':s → 0':s → 0':s
+' :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s

(5) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
fac, *', floop, +'

They will be analysed ascendingly in the following order:
*' < fac
*' < floop
+' < *'

(6) Obligation:

Innermost TRS:
Rules:
fac(0') → 1'
fac(s(x)) → *'(s(x), fac(x))
floop(0', y) → y
floop(s(x), y) → floop(x, *'(s(x), y))
*'(x, 0') → 0'
*'(x, s(y)) → +'(*'(x, y), x)
+'(x, 0') → x
+'(x, s(y)) → s(+'(x, y))
1's(0')
fac(0') → s(0')

Types:
fac :: 0':s → 0':s
0' :: 0':s
1' :: 0':s
s :: 0':s → 0':s
*' :: 0':s → 0':s → 0':s
floop :: 0':s → 0':s → 0':s
+' :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s

Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))

The following defined symbols remain to be analysed:
+', fac, *', floop

They will be analysed ascendingly in the following order:
*' < fac
*' < floop
+' < *'

(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
+'(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)

Induction Base:
+'(gen_0':s2_0(a), gen_0':s2_0(0)) →RΩ(1)
gen_0':s2_0(a)

Induction Step:
+'(gen_0':s2_0(a), gen_0':s2_0(+(n4_0, 1))) →RΩ(1)
s(+'(gen_0':s2_0(a), gen_0':s2_0(n4_0))) →IH
s(gen_0':s2_0(+(a, c5_0)))

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(8) Complex Obligation (BEST)

(9) Obligation:

Innermost TRS:
Rules:
fac(0') → 1'
fac(s(x)) → *'(s(x), fac(x))
floop(0', y) → y
floop(s(x), y) → floop(x, *'(s(x), y))
*'(x, 0') → 0'
*'(x, s(y)) → +'(*'(x, y), x)
+'(x, 0') → x
+'(x, s(y)) → s(+'(x, y))
1's(0')
fac(0') → s(0')

Types:
fac :: 0':s → 0':s
0' :: 0':s
1' :: 0':s
s :: 0':s → 0':s
*' :: 0':s → 0':s → 0':s
floop :: 0':s → 0':s → 0':s
+' :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s

Lemmas:
+'(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)

Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))

The following defined symbols remain to be analysed:
*', fac, floop

They will be analysed ascendingly in the following order:
*' < fac
*' < floop

(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
*'(gen_0':s2_0(a), gen_0':s2_0(n611_0)) → gen_0':s2_0(*(n611_0, a)), rt ∈ Ω(1 + a·n6110 + n6110)

Induction Base:
*'(gen_0':s2_0(a), gen_0':s2_0(0)) →RΩ(1)
0'

Induction Step:
*'(gen_0':s2_0(a), gen_0':s2_0(+(n611_0, 1))) →RΩ(1)
+'(*'(gen_0':s2_0(a), gen_0':s2_0(n611_0)), gen_0':s2_0(a)) →IH
+'(gen_0':s2_0(*(c612_0, a)), gen_0':s2_0(a)) →LΩ(1 + a)
gen_0':s2_0(+(a, *(n611_0, a)))

We have rt ∈ Ω(n2) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n2).

(11) Complex Obligation (BEST)

(12) Obligation:

Innermost TRS:
Rules:
fac(0') → 1'
fac(s(x)) → *'(s(x), fac(x))
floop(0', y) → y
floop(s(x), y) → floop(x, *'(s(x), y))
*'(x, 0') → 0'
*'(x, s(y)) → +'(*'(x, y), x)
+'(x, 0') → x
+'(x, s(y)) → s(+'(x, y))
1's(0')
fac(0') → s(0')

Types:
fac :: 0':s → 0':s
0' :: 0':s
1' :: 0':s
s :: 0':s → 0':s
*' :: 0':s → 0':s → 0':s
floop :: 0':s → 0':s → 0':s
+' :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s

Lemmas:
+'(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
*'(gen_0':s2_0(a), gen_0':s2_0(n611_0)) → gen_0':s2_0(*(n611_0, a)), rt ∈ Ω(1 + a·n6110 + n6110)

Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))

The following defined symbols remain to be analysed:
fac, floop

(13) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol fac.

(14) Obligation:

Innermost TRS:
Rules:
fac(0') → 1'
fac(s(x)) → *'(s(x), fac(x))
floop(0', y) → y
floop(s(x), y) → floop(x, *'(s(x), y))
*'(x, 0') → 0'
*'(x, s(y)) → +'(*'(x, y), x)
+'(x, 0') → x
+'(x, s(y)) → s(+'(x, y))
1's(0')
fac(0') → s(0')

Types:
fac :: 0':s → 0':s
0' :: 0':s
1' :: 0':s
s :: 0':s → 0':s
*' :: 0':s → 0':s → 0':s
floop :: 0':s → 0':s → 0':s
+' :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s

Lemmas:
+'(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
*'(gen_0':s2_0(a), gen_0':s2_0(n611_0)) → gen_0':s2_0(*(n611_0, a)), rt ∈ Ω(1 + a·n6110 + n6110)

Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))

The following defined symbols remain to be analysed:
floop

(15) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol floop.

(16) Obligation:

Innermost TRS:
Rules:
fac(0') → 1'
fac(s(x)) → *'(s(x), fac(x))
floop(0', y) → y
floop(s(x), y) → floop(x, *'(s(x), y))
*'(x, 0') → 0'
*'(x, s(y)) → +'(*'(x, y), x)
+'(x, 0') → x
+'(x, s(y)) → s(+'(x, y))
1's(0')
fac(0') → s(0')

Types:
fac :: 0':s → 0':s
0' :: 0':s
1' :: 0':s
s :: 0':s → 0':s
*' :: 0':s → 0':s → 0':s
floop :: 0':s → 0':s → 0':s
+' :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s

Lemmas:
+'(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
*'(gen_0':s2_0(a), gen_0':s2_0(n611_0)) → gen_0':s2_0(*(n611_0, a)), rt ∈ Ω(1 + a·n6110 + n6110)

Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))

No more defined symbols left to analyse.

(17) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n2) was proven with the following lemma:
*'(gen_0':s2_0(a), gen_0':s2_0(n611_0)) → gen_0':s2_0(*(n611_0, a)), rt ∈ Ω(1 + a·n6110 + n6110)

(18) BOUNDS(n^2, INF)

(19) Obligation:

Innermost TRS:
Rules:
fac(0') → 1'
fac(s(x)) → *'(s(x), fac(x))
floop(0', y) → y
floop(s(x), y) → floop(x, *'(s(x), y))
*'(x, 0') → 0'
*'(x, s(y)) → +'(*'(x, y), x)
+'(x, 0') → x
+'(x, s(y)) → s(+'(x, y))
1's(0')
fac(0') → s(0')

Types:
fac :: 0':s → 0':s
0' :: 0':s
1' :: 0':s
s :: 0':s → 0':s
*' :: 0':s → 0':s → 0':s
floop :: 0':s → 0':s → 0':s
+' :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s

Lemmas:
+'(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
*'(gen_0':s2_0(a), gen_0':s2_0(n611_0)) → gen_0':s2_0(*(n611_0, a)), rt ∈ Ω(1 + a·n6110 + n6110)

Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))

No more defined symbols left to analyse.

(20) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n2) was proven with the following lemma:
*'(gen_0':s2_0(a), gen_0':s2_0(n611_0)) → gen_0':s2_0(*(n611_0, a)), rt ∈ Ω(1 + a·n6110 + n6110)

(21) BOUNDS(n^2, INF)

(22) Obligation:

Innermost TRS:
Rules:
fac(0') → 1'
fac(s(x)) → *'(s(x), fac(x))
floop(0', y) → y
floop(s(x), y) → floop(x, *'(s(x), y))
*'(x, 0') → 0'
*'(x, s(y)) → +'(*'(x, y), x)
+'(x, 0') → x
+'(x, s(y)) → s(+'(x, y))
1's(0')
fac(0') → s(0')

Types:
fac :: 0':s → 0':s
0' :: 0':s
1' :: 0':s
s :: 0':s → 0':s
*' :: 0':s → 0':s → 0':s
floop :: 0':s → 0':s → 0':s
+' :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s

Lemmas:
+'(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)

Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))

No more defined symbols left to analyse.

(23) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
+'(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)

(24) BOUNDS(n^1, INF)